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1. Vectors (Introduction)
A vector is a combination of three things:

• a positive number called its magnitude,
• a direction in space,
• a sense making more precise the idea of direction.

Typically a vector is illustrated as a directed straight line.

A
B

Diagram 1
The vector in the above diagram would be written as

⇀

AB with:
• the direction of the arrow, from the point A to the point B,

indicating the sense of the vector,

• the magnitude of
⇀

AB given by the length of AB.

The magnitude of
⇀

AB is written |
⇀

AB |.

There are very many physical quantities which are best described as
vectors; velocity, acceleration and force are all vector quantities.
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Two vectors are equal if they have the same magnitude, the same
direction (i.e. they are parallel) and the same sense.

A
B

A1

B1

Diagram 2

In diagram 2 the vectors
⇀

AB and
⇀

A1B1 are equal, i.e.
⇀

AB=
⇀

A1B1.
If two vectors have the same length, are parallel but have opposite
senses then one is the negative of the other.

A2

B2

A
B

Diagram 3

In diagram 3 the vectors
⇀

AB and
⇀

B2A2 are of equal length, are

parallel but are opposite in sense, so
⇀

AB= −
⇀

B2A2.
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Quiz

Diagram 4 shows a parallelo-
gram. Which of the following
equations is the correct one?

D

C

A

B

Diagram 4

(a)
⇀

DA=
⇀

BC, (b)
⇀

AD= −
⇀

CB, (c)
⇀

AD=
⇀

CB, (d)
⇀

DA= −
⇀

CB.

If two vectors are parallel, have the same sense but different magni-
tudes then one vector is a scalar (i.e. numeric) multiple of the other.

In diagram 5 the vector
⇀

AB is par-

allel to
⇀

A3B3, has the same sense but

is twice as long, so
⇀

AB= 2
⇀

A3B3.

A
B

A3
B3

Diagram 5
In general multiplying a vector by a positive number λ gives a vector
parallel to the original vector, with the same sense but with magnitude
λ times that of the original. If λ is negative then the sense is reversed.

Thus from diagram 5 for example,
⇀

A3B3= − 1
2

⇀

BA.
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2. Addition of Vectors
In diagram 6 the three vectors given by

⇀

AB ,
⇀

BC, and
⇀

AC, make up the sides of a tri-
angle as shown. Referring to this diagram, the
law of addition for vectors, which is usually
known as the triangle law of addition, is

⇀

AB +
⇀

BC=
⇀

AC .

The vector
⇀

AC is called the resultant vector.
A

B

C

Diagram 6

Physical quantities which can be described as vectors satisfy such
a law. One such example is the action of forces. If two forces are

represented by the vectors
⇀

AB and
⇀

BC then the effect of applying
both of these forces together is equivalent to a single force, the resultant

force, represented by the vector
⇀

AC.
One further vector is required, the zero vector. This has no direction
and zero magnitude. It will be written as 0.
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Example 1 (The mid-points theorem)
Let ABC be a triangle and let D
be the midpoint of AC and E be
the midpoint of BC. Prove that
DE is parallel to AB and half its
length i.e. |AB| = 2|DE|.

A B

C

D E

Diagram 7
Proof
Since D is the midpoint of

⇀

AC, it follows that
⇀

AC= 2
⇀

DC. Similarly
⇀

CB= 2
⇀

CE. Then
⇀

AC +
⇀

CB = 2
⇀

DC +2
⇀

CE

= 2(
⇀

DC +
⇀

CE) .

Now
⇀

AC +
⇀

CB=
⇀

AB and
⇀

DC +
⇀

CE=
⇀

DE.
Substituting these into the equation above gives

⇀

AB= 2
⇀

DE .
Since these are vectors, AB must be parallel to DE and the length of

AB is twice that of DE, i.e. |
⇀

AB | = 2|
⇀

DE |.
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3. Component Form of Vectors

The diagram shows a vector
⇀

OC at an angle
to the x axis. Take i to be a vector of length 1
(called a unit vector) parallel to the x axis and
in the positive direction, and j to be a vector
of length 1 (another unit vector) parallel to
the y axis and in the positive direction.

i

j

O A

C

Diagram 8

From diagram 8,
⇀

OC=
⇀

OA +
⇀

AC. The vector
⇀

OA is parallel to the

vector i and four times its length so
⇀

OA= 4i. Similarly
⇀

AC= 3j. Thus

the vector
⇀

OC may be written as
⇀

OC= 4i + 3j .

This is known as the 2-dimensional component form of the vector. In
general every vector can be written in component form. This package
will consider only 2-dimensional vectors.
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Exercise 1. From diagram 9,
write down the component form
of the following vectors: (Click
on the green letters for solu-
tions.)

(a)
⇀

OA, (b)
⇀

OB,

(c)
⇀

OC, (d)
⇀

OD,

O

A

5

3
B

−5

4

C

2

−4
D

−5

−5

Diagram 9

In this package, the following properties of vectors are used.

• To add two or more vectors in component form, add
the corresponding components.

• To multiply a vector in component form by a scalar,
multiply each of the components by the scalar.

• If a vector in component form is ai+ bj then its mag-
nitude is

√
a2 + b2. (Pythagoras’ theorem)
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Example 3

If
⇀

AB= 2i + 2j and
⇀

BC= i + 2j, prove

that the magnitude of
⇀

AC is 5.

A

B

C

Diagram 10Proof
The three vectors form three sides of a triangle
(see diagram 10 which is NOT to scale) so

⇀

AC =
⇀

AB +
⇀

BC = (2i + 2j) + (1i + 2j)
= (2i + 1i) + (2j + 2j) = 3i + 4j .

Thus |
⇀

AC | =
√

32 + 42 = 5.

NB Vectors are often printed as boldface lower case letters such as a.

Exercise 2. If a = −i + 3j, b = 2i + 3j and c = i− 2j, calculate:
(a) a + b, (b) b + c, (c) a + b + c,

(d) a + 2b, (e) 2b− 3a, (f) |a|,

(g) |a + b|, (h) |a|+ |b|, (i) |2a− b|,
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Example 4 Two vectors are
⇀

AB= i + j and
⇀

CD= 2i + 3j. Find
(a) The value of λ such that λ

⇀

AB +
⇀

CD is parallel to i,
(b) The value of λ such that λ

⇀

AB +
⇀

CD is parallel to 4i + 3j.

Solution First find λ
⇀

AB +
⇀

CD in component form.

λ
⇀

AB +
⇀

CD = λ(i + j) + (2i + 3j)
= (λi + λj) + (2i + 3j)
= (λ + 2)i + (λ + 3)j .

(a) If λ
⇀

AB +
⇀

CD is parallel to i then the j component must be zero,

i.e. λ + 3 = 0. Thus λ = −3 and we have −3
⇀

AB +
⇀

CD= −i.

(b) If λ
⇀

AB +
⇀

CD is parallel to 4i+3j then there is a number κ such
that

(λ + 2)i + (λ + 3)j = κ(4i + 3j)
∴ (λ + 2)i + (λ + 3)j = 4κi + 3kj

so λ + 2 = 4κ and λ + 3 = 3κ .
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Then λ + 2
λ + 3

=
4κ

3κ
=

4
3

∴ 3(λ + 2) = 4(λ + 3)
3λ + 6 = 4λ + 12
6− 12 = 4λ− 3λ

i.e. λ = −6 ,

and the vector is −6(i + j) + (2i + 3j) = −4i− 3j = −(4i + 3j).

Quiz If a = 2i+3j, b = −3i+2j and c = 2i− j, which of the following
vectors is parallel to the resultant of a, b and c, i.e. a + b + c?
(a) −2i− 6j, (b) 2i− 6j, (c) 2i + 8j, (d) 2i− 8j.

Quiz If a = i + j and b = i− j, for which of the following values of λ
is the vector λa + b parallel to c = 2i− 3j?

(a) λ =
1
5
, (b) λ = −1

5
, (c) λ = 5, (d) λ = −5.
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4. Quiz on Vectors
Choose the correct option for each of the following.

Begin Quiz

1. If a = −2i + 4j, b = 3i− 2j, c = 4i + 5j then a + b + c is

(a) −5i− 7j , (b) 5i− 7j , (c) −5i + 7j , (d) 5i + 7j .

2. If u = −2i + 4j, v = 3i + 2j, w = 4i + 6j then |u + v + w| is

(a) 5 , (b) 13 , (c) 4 , (d) 15 .

3. If u = −i+3j and v = i+2j, then λu+v is parallel to w = −i+4j
if λ is

(a) −6 , (b) 6 , (c) −5 , (d) 5 .

End Quiz
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Solutions to Exercises
Exercise 1(a)

For the vector
⇀

OA shown on the
diagram the component in the di-
rection given by the unit vector
i is 5 and the component in the
direction j is 3. Therefore the

2-dimensional vector
⇀

OA is, in
component form, written as

⇀

OA= 5i + 3j .

O

A

5

3
B

−5

4

C

2

−4
D

−5

−5

Click on the green square to return
�
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Exercise 1(b)

The vector
⇀

OB shown on the di-
agram has the component −5 in
the i direction while the compo-
nent in the j direction is 4. Thus

the 2-dimensional vector
⇀

OB in
component form is written as

⇀

OB= −5i + 4j .

O

A

5

3
B

−5

4

C

2

−4
D

−5

−5

Click on the green square to return
�
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Exercise 1(c)

For the vector
⇀

OC shown on the
diagram the component in the di-
rection given by the unit vector i
is 2 while the component in the
direction given by j is −4. There-
fore the component form of the

2-dimensional vector
⇀

OC is
⇀

OC= 2i− 4j .

O

A

5

3
B

−5

4

C

2

−4
D

−5

−5

Click on the green square to return
�
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Exercise 1(d)

For the vector
⇀

OD shown on the
diagram the component in the di-
rection given by the unit vector i
is −5 and the component in the
direction given by j is also −5.
The component form of the 2-

dimensional vector
⇀

OD is there-
fore

⇀

OC= −5i− 5j .

O

A

5

3
B

−5

4

C

2

−4
D

−5

−5

Click on the green square to return
�
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Exercise 2(a)
The sum of the two vectors

a = −i + 3j and b = 2i + 3j

is found by summing up the corresponding components of each vector.
Thus

a + b = (−i + 3j) + (2i + 3j) = (−1 + 2)i + (3 + 3)j = i + 6j .

Click on the green square to return
�
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Exercise 2(b)
The sum of the two vectors

b = 2i + 3j and c = i− 2j

is found by adding the corresponding components of each vector. Thus

b + c = (2i + 3j) + (i− 2j) = (2 + 1)i + (3− 2)j = 3i + j .

Click on the green square to return
�
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Exercise 2(c)
To find the sum of the three vectors

a = −i + 3j , b = 2i + 3j and c = i− 2j ,

add the corresponding components of each vector. The resulting vec-
tor is thus

a + b + c = (−i + 3j) + (2i + 3j) + (i− 2j)
= (−1 + 2 + 1)i + (3 + 3− 2)j = 2i + 4j .

Click on the green square to return
�
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Exercise 2(d)
To find the sum a + 2b with

a = −i + 3j and b = 2i + 3j ,

first find the vector 2b:

2b = 2× (2i + 3j) = 4i + 6j .

The vector a + 2b is now found by adding the corresponding compo-
nents of each vector. The resulting vector is thus

a + 2b = (−i + 3j) + (4i + 6j)
= (−1 + 4)i + (3 + 6)j = 3i + 9j .

Click on the green square to return
�
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Exercise 2(e)
To find the vector 2b− 3a with

a = −i + 3j and b = 2i + 3j ,

first find the vectors 2b and 3a:

2b = 2× (2i + 3j) = 4i + 6j ,

3a = 3× (−i + 3j) = −3i + 9j ,

The vector 2b−3a is now easily found by subtracting the components
of these vectors:

2b− 3a = (4i + 6j)− (−3i + 9j)
= (4 + 3)i + (6− 9)j = 7i− 3j .

Click on the green square to return
�
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Exercise 2(f)
The magnitude of the vector

a = −i + 3j

is given by

|a| =
√

(−1)2 + 32 =
√

1 + 9 =
√

10 .

Click on the green square to return
�
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Exercise 2(g)
To find the magnitude of the vector a + b, first find the sum of the
two vectors

a = −i + 3j and b = 2i + 3j .

The resulting vector is

a + b = (−i + 3j) + (2i + 3j) = (−1 + 2)i + (3 + 3)j = i + 6j .

The magnitude of this vector is given by

|a + b| =
√

12 + 62 =
√

37 .

Click on the green square to return
�
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Exercise 2(h)
To find |a|+ |b|, first find the magnitude of each of the vectors
a = −i + 3j and b = 2i + 3j.
The magnitude of the vector a is

|a| =
√

(−1)2 + 32 =
√

10 .

The magnitude of the vector b is

|b| =
√

22 + 32 =
√

13 .

Therefore
|a|+ |b| =

√
10 +

√
13 .

Click on the green square to return
�
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Exercise 2(i)
To find |2a−b|, first find 2a−b. The vector a in component form is
given as

a = −i + 3j
so the component form of the vector 2a is

2a = 2× (−1)i + 2× 3j = −2i + 6j .

The difference between 2a and b = 2i + 3j is the vector

2a− b = (−2i + 6j)− (2i + 3j) = (−2− 2)i + (6− 3)j = −4i + 3j .

The magnitude of the resulting vector 2a− b is therefore

|2a− b| =
√

(−4)2 + 32 =
√

25 = 5 .

Click on the green square to return
�
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Solutions to Quizzes
Solution to Quiz:

According to the diagram shown
opposite the magnitudes of the
vectors

⇀

AD and
⇀

CB are equal,
but the direction of the vector
⇀

AD is from the point A to the
point D, while the direction of
the vector

⇀

CB is opposite, from
the point B to the point C.
Therefore

⇀

AD= −
⇀

CB .

D

C

A

B

If checked, the other solutions will be found to be false. End Quiz
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Solution to Quiz:
In order to determine which of the vectors is parallel to the resultant
of a, b and c, the resultant must first be calculated.

The resultant of the three vectors

a = 2i + 3j , b = −3i + 2j and c = 2i− j .

is

a + b + c = (2i + 3j) + (−3i + 2j) + (2i− j)
= (2− 3 + 2)i + (3 + 2− 1)j = i + 4j .

Next note that the vector 2i+8j given in the answer (c) can be written
as

2i + 8j = 2× (i + 4j) = 2(a + b + c) ,

so the resultant is parallel to the vector 2i + 8j. End Quiz
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Solution to Quiz: To find the value of λ for which λa + b parallel
to c = 2i − 3j, first calculate the former. If a = i + j and b = i − j
then

λa + b = λ(i + j) + (i− j) = (λ + 1)i + (λ− 1)j .

If this vector is parallel to the vector c = 2i−3j then there is a number
k such that

(λ + 1)i + (λ− 1)j = k(2i− 3j) .

This holds when λ + 1 = 2k and λ− 1 = −3k .
Multiply the first equation by 3

3λ + 3 = 6k ,

and the second one by 2

2λ− 2 = −6k .

Now add the left and right sides of these equations to obtain:

5λ + 1 = 0 , thus λ = −1
5

.

End Quiz
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